دانلود متن کامل پایان نامه ارشد – ۲-۲-۸-۵:جمع بندی روشهای پیش بینی – پایان نامه های کارشناسی ارشد |
۲-۲-۸-۵:جمع بندی روشهای پیشبینی
همان طور که قبلا تعریف شد؛ سری زمانی مجموعه ای از مشاهدات است که بر حسب زمان مرتب شدهاند(فاطمی،۱۳۷۵) و پیش بینی بارزترین مورد استفاده از سریهای زمانی میباشد، به طوری که در صنعت و اقتصاد از اهمیت زیادی برخوردار است.
در مدلهای علی و معلولی از رابطه بین سری زمانی مورد نظر و یک یا چند سری زمانی دیگر بهره میجویند. اگر این متغیرهای اخیر با متغیر مورد نظر دارای همبستگی باشند و برای این همبستگی ظاهراً علتی وجود داشته باشد، می توان یک مدل آماری که توصیف کننده این رابطه باشد، بنا کرد سپس با دانستن مقادیر متغیرهایی که به یکدیگر همبسته شدهاند، می توان از مدل استفاده تا متغیر غیر مستقل را پیش بینی کرد. یک محدودیت آشکار برای استفاده از مدلهای علت و معلولی نیاز به این امر است که متغیرهای مستقل در زمانی که پیشبینی به عمل می آید معلوم باشند. یکی از مناسبترین روشهای سری زمانی استفاده شده مدل ARIMA میباشد، در حال حاضر در این مدل روش مناسبی وجود ندارد که به محض اینکه مشاهده جدیدی در دسترس قرار گرفت، تخمین پارامترهای مدل را اصلاح یا به روز نماید و پژوهشگر ناگزیر است به طور کامل مدل را برازش نماید. و همچنین ما باید فرض نماییم که تکامل آینده سری زمانی با گذشته یکسان خواهد بود، یعنی شکل مدل با زمان تغییر نخواهد نمود. عدم امتیاز نهایی مدلهای ARIMA سرمایه گذاری مورد نیاز در زمان یا سایر منابع برای ساختن یک مدل رضایت بخش است، ولی این مدلها بخصوص برای سریهای زمانی ای که در فاصله نمونه گیری خیلی کوچکاند، بدیل اینکه تاریخ نسبتا طولانی یی را به آسانی میتوان تهیه کرد به نحو شایستهای مناسبند.(فاطمی،۱۳۷۵)
شبکه های عصبی مصنوعی در واقع یک سیستم داده ÷ردازی اطلاعات هستند و دارای خصوصیات اجرایی خاص مانند شبکه های عصبی جانوری است. همچنین این روشها از جمله مدلهای تابع انتقال بوده که کاربرد وسیعی پیدا کرده اند، این مدلها به طور طبیعی از زمینههایی ناشی میشوند که یک ساختار همبسته کننده یا ساختار علی بین متغیرهایی که به طور موقت یا به طور مداوم با هم مرتبط بوده اند، وجود دارد. مدلهای تابع انتقال فرض میکنند که ورودی متغیر را تحت تاثیر قرار می دهند؛ اما این رابطه تک سویی است، یعنی روی تاثیری ندارد. این موضوع می تواند در عمل غیر واقعی باشد.(مصطفی کیا،۱۳۸۸)
روشهای تحلیل رگرسیون اماری غیر خطی شبیه شبکه های عصبی است. تجربه های زیادی موجب شده است که روشهای نگاشت توسط شبکه های عصبی با بهترین روشهای رگرسیون غیر خطی قابل مقایسه باشند. روشهای شبکه عصبی نسبت به روشهای رگرسیون خطی برای فضاهایی با ابعاد بالا ارجحیت دارد.
مهمترین امتیاز شبکه های عصبی جهت نگاشت نسبت به روشهای رگرسیون آماری کلاسیک این است که شبکه های عصبی شکل تابعی عمومی تری را نسبت به روشهای آماری کلاسیک دارند به عنوان مثال در تحلیلهای فوریه نمونه های یادگیری به شکل امواج سینوسی و به صورت مضاربی صحیحی از فرکانس، برای محاسبه یک تابع به کار میروند. در محاسبات عصبی شبکه های عصبی نمونه های یادگیری را جهت تنظیم دقیق دامنه، فاز و فرکانس به کار میبرد و موجب افزایش چشمگیر دقت تابع می شود. شبکه های عصبی از جمع آثار خطی پیروی نکرده و همچنین انحصارا از توابع متعامد استفاده نمی کنند. در تحلیل های رگرسیونی آماری توابع خطی برازشی میتوانند توابعی غیر خطی از اطلاعات ورودی باشند ولی تنها از توابع خطی نسبت به پارامترها استفاده میگردد. در رگرسیون آماری غیر خطی توابع برازش میتوانند هم نسبت به اطلاعات ورودی و هم نسبت به پارامترها غیر خطی باشد.(خالوزاده،۱۳۷۷)
شبکه های عصبی مصنوعی اصلا می تواند به عنوان یک روش رگرسیون غیر خطی به کار رود. تفاوت اساسی دیگر بین شبکه های عصبی و رگرسیون در این است که معمولا در تحلیلهای آماری ساختار داخلی شبکه های عصبی ناشناخته باقی میماند، یعنی ساختار داخلی آن نامعلوم باقی میماند و مانند یک جعبه سیاه ممتد عمل می کند، ولی نتایج آن در بسیاری از موارد مفید میباشد. ساختارهای شبکه های عصبی معمولا موقتی است وای راهنمائیهایی برای برازش با یک مدل آماری می تواند ارائه نمایند.(هاپتوف[۵۷]،۱۹۹۳ و تانگ[۵۸]،۱۹۹۱)
لذا بسیاری از شبکه های عصبی از نظر عملکرد معادل رویه های استاندارد آماری هستند به عنوان مثال شبکه های پروسپترون تعمیمی از مدلهای خطی هستند.(مصطفی کیا،۱۳۸۸)
۲-۲-۹: شاخص قیمت سهام
شاخص بهای سهام در اقتصاد هر کشوری یکی از اساسی ترین متغیر های کلان اقتصادی است؛ به گونه ای که رشد متعادل و مداوم این شاخص به معنای رشد و رونق اقتصادی کشور استدو برعکس، کاهش مداوم آن نشان از رکود اقتصاد دارد و تغییرات انفجاری و پیوسته آن (در جهت بالا و پایین) گویای بی ثباتی شرایط اقتصادی جامعه است.
همان گونه که در هنگام خرید کالا نخستین پرسش از مغازه دار بهای کالا است، سرمایه گذار نیز هنگام خرید سهام، به یکی از نخستین نکاتی که توجه دارد، تغییرات بهای سهام است.
هر سرمایه گذاری در هنگام خرید سهام مهمترین مسئله ای را که در نظر میگیرد، تغییرات قیمت آن سهام میباشد. لذا لازم است که از نماینده ای جامع از عملکرد بازار به عنوان شاخص قیمت استفاده نماید. تغییرات قیمت هر سهم می تواند ناشی از دو عامل باشد، یکی شرایط ویژه ایست که بر قیمت آن سهم بخصوص تاثیر میگذارد، مثلا مدیریت بهینه و کارا در سازمان، افزایش سرمایه و سودآوری و … و دیگری عوامل تاثیر گذار بر کل بازار سهام میباشد، که این عامل به عنوان ریسک بازار شناخته می شود، تغییرات مداوم و ناهمگون شاخص نماینگر افزایش ریسک در بازار میباشد و میدانیم که سرمایه گذاران ترجیح میدهند در یک بازار آرام و مطمئن که سیر مشخصی دارد سرمایه گذاری کنند، زیرا عموما سرمایه گذاران ریسک گریز هستند و افزایش ریسک در بازار سرمایه موجب کاهش سرمایه گذاری در آن می شود.
ارزیابی یک سبد فرضی از کل سهام یک بازار مالی کار بسیار دشواری است، لذا نماینده ای به عنوان شاخص جهت آشکار سازی روند حرکت بازار، در اختیار سرمایه گذاران گذاشته شده است تا بتوانند با کمک آن در خرید سهام تصمیمات بهتری اتخاذ نمایند.
۲-۲-۱۰: تعریف شاخص
شاخص از لحاظ لغوی به معنای نماینده، نشان دهنده و نمودار میباشد، و وسیله ایست جهت تشخیص و یا تمایز بین دو متغیر، اما از لحاظ آماری کمیتی است که به صورت نسبی تغییرات را در گروههای مختلف بیان میکند.
شاخص به طور کاربردی به عنوان نماینده ای از بین کمیت های همگن میباشد و میتواند میزان و جهت تغییر این کمیت ها را به طور نسبی اندازه گیری کند، شاخص بر حسب مقدار آن در یک زمان پایه سنجیده می شود که این مقدار پایه را عموما ۱۰۰ فرض میکنند، بنابرین بر مبنای شاخص می توان تغییرات ایجاد شده در متغیرهای معینی را در یک دوره بررسی نمود.
۲-۲-۱۱: فواید شاخص
در یک نظام اقتصادی کارا می بایست اطلاعات مفید و هر چند مختصر و قابل اعتماد از کل حرکت بازار در اختیار سرمایه گذاران قرار بگیرد. از روی اعداد شاخص تغییرات احتمالی در آینده را می توان پیشبینی کرد.
فرم در حال بارگذاری ...
[سه شنبه 1401-09-29] [ 05:04:00 ق.ظ ]
|